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ABSTRACT

This study presents a modification to two linear optimal control algorithms, namely classical and
instantaneous, to achieve a greater reduction in structural displacements and control forces. The
modification consists of building a library of gain matrices and selecting the gain matrix that would
result in the maximum control force without exceeding the control system capacity. The
modification was used to compute the response of several single-degree-of-freedom (SDOF)
systems, a multi-degree-of-freedom (MDOF) system, and a base isolated structure. Based on the
examples considered, the modification results in a reduction of up to 45 % in the peak control
forces and structural displacements as compared to existing algorithms.

The study shows that the external excitation influences the selection of the control system

parameters such as controller capacity and gain matrices. These parameters, therefore, should be
determined according to the seismic excitation intensity expected at the site.
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1. INTRODUCTION

Active control may be used to reduce the response of structures to earthquakes and wind. When an
active control system is used, the external loads are partially resisted by control forces, the
magnitudes of which are computed by control algorithms.

Many control algorithms have been introduced and tested numerically and experimentally to prove
their reliability and efficiency. Among them are classical optimal control, instantaneous optimal
control, pole assignment, independent modal space control, predictive control, and many others.
References to these algorithms can be found in [7]. Of these, two algorithms, classical and
instantaneous, have been used extensively to control the response of structures to seismic loads.
Both algorithms are effective in reducing the response. This study briefly reviews these two
algorithms and proposes a modification to improve their performance in reducing the control forces
and the structural displacements. The modified algorithms, which use varying weighting matrices
to compute the control forces, are examined for several single and multi-degree-of freedom
structures under different seismic excitations to demonstrate their effectiveness.






2. CLASSICAL AND INSTANTANEOUS OPTIMAL CONTROL ALGORITHMS

The governing differential equation of motion for an n-degree of freedom structure with mass
matrix M, damping matrix C, and stiffness matrix K with m controllers is given by:

M x(#) +C x(t) +K x() =D u(z) +E f(©) (2.1)

where the n-dimensional vector x() represents the displacement, the r-dimensional vector f(z) the
external excitation, and the m-dimensional vector #(¢) the control force. The matrix D (size m x n)
and matrix E (size n x n) define the locations of the controllers and excitations, respectively.

Using the state-space representation, equation (2.1) takes the form:

Z(t)=A z(t) +B u(®) + H f(1) (2.2)

x(1)
where z(#)= |:5c(t)
H are given in [7].

} is a 2n-dimensional state vector. The system matrix A, and the matrices B and

2.1 Classical Optimal Control

In the classical linear optimal control theory, the control force vector u(¢) is selected by minimizing
a cost function over the response duration. The function to be minimized is a linear quadratic
expression which takes the form:

I= j [27(5) Q z()+ u7(?) R u(t)] dt (2.3)

0

where 7, is the duration of excitation, Q (size 2n x 2n) is a positive semi-definite matrix, and R

(size m x m) is a positive definite matrix. The matrices Q and R are referred to as weighting
matrices which are assumed constant during the excitation. If the elements of Q are larger than
those of R, the reduction of z(t) is given priority over the reduction of u(r). For a closed-loop
control configuration, minimizing equation (2.3) would result in a control force vector u(?)
regulated only by the state vector z(#) such that:

u(t) = G(@t) z(2) (2.4)
and

G(@)= --;— R-1 BT P(r) (2.5)

where the matrix G(¢) (size m x 2n) represents the gain matrix, and the matrix P(z) (size 2n x 2n)
is the solution of the classical Riccati equation which after ignoring the excitation term reduces to:

P(t) + P(r) A- % P(t) BRIBT P(r) + AT P(r) +2Q=0, P@t;) =0 (2.6)




Equation (2.6) must be solved backward in time since P(f) is specified at t;. In structural
applications, the elements of P(f) remain constant during the response and drop to zero at 1, [7].
Setting P(#) to a constant, equation (2.6) takes the form :

PA-%PBR‘IBTP+ATP +2Q=0 (2.7)

The gain matrix G (¢) which also remains constant during the excitation is equal to:

G=—% R-! BT P (2.8)

2.2 Instantaneous Optimal Control

Yang et al [9] argued that the above procedure is not truly optimal because the excitation term in
equation (2.6) is ignored. In addition, the method is not feasible for open-loop and closed-open-
loop systems where the excitation term cannot be ignored and the equation must be solved
backward in time with a priori knowledge of the excitation term. Consequently, they proposed the
instantaneous optimal control algorithm which is based on minimizing the cost function at each
instant of time rather than over the response duration. The cost function to be minimized is the
integrand in equation (2.3), i.e.

() =727() Q z(t)+ u"(?) R u(r) (2.9)

After some mathematical manipulation, the control force vector u(f) for a closed-loop system may
be computed from equation (2.4) with a constant gain matrix in the form:

G=- % Ar R'T BT Q (2.10)

It is apparent that the formulation of the gain matrix is arbitrary and depends on the choice of time
interval Ar and weighting matrices R and Q. In another study, Yang et al [12] indicated that the
selection of At and Q should satisfy Lyapunov stability and energy criteria. They suggested
several methods for selecting Q and used them to solve different cases.

It should be noted that for a given control force, the classical and instantaneous optimal control
algorithms with constant weighting matrices result in a reduction in response. By using variable Q
or R matrices, the same reduction in response can be achieved under a smaller control force, or put
another way, the same control force would result in a larger reduction in displacements than those
attained with constant Q and R matrices. Moreover, one of the features of an active control system
is that the structural characteristics may be adjusted to account for changes in the excitation. This
may be accomplished by replacing the system matrix A by [A+BG] which would result in
changing the damping and stiffness coefficients during the response. For fixed gain matrices, the
system matrix [A+BG] will remain the same during the response with no changes in the modified
stiffness and damping coefficients. One may need, however, to change these parameters during the
response by varying the gain matrices according to the excitation, structural properties, and
controller capacity. For these reasons, varying gain matrices can improve the performance of a
control system compared to constant gain matrices.




3. MODIFIED OPTIMAL CONTROL ALGORITHMS

It is known that the larger the elements of the Q matrix, the larger is the control force vector and
consequently, the smaller is the displacement vector. If one is interested in minimizing vibrations,
the elements of Q should be kept large to achieve a large control force vector. Since the capacity of
a control system is limited, it is not always possible to achieve the required control force vector to
keep the vibrations within the desired limits. A modification to the algorithms discussed in the
previous section is presented herein. It consists of varying the weighting matrix Q during the
response to minimize the displacement and control force vectors. The modification makes the
optimum use of a control system with a given capacity by varying the weighting matrix Q to
achieve the maximum reduction in the response without exceeding the capacity. The necessary
steps for the analysis are described below.

1- Select different Q matrices. The selection of Q matrices depends on the range of control forces
to be used in the analysis. This range should include the control system capacity and allow the
optimum use of control force in the analysis. A series of ten Q matrices were used for this study.
Minimum and maximum Q matrices were selected to correspond to control forces of one-half and
twice the system capacity, respectively. Between these two limits, eight equally spaced Q matrices
were chosen.

2- Establish a library of gain matrices corresponding to the Q matrices using equations (2.7 and
2.8) for the classical algorithm and equation (2.10) for the instantaneous algorithm. Rank the gain
matrices in decreasing order in the library as shown in Figure 3.1. The gain matrices are computed
and stored off-line; hence, no additional on-line computations are encountered during the response.

3- Specify a reference control force Urer. In this study, Urer is assumed as 95 % of the controller
capacity U"p. The reason for this assumption will be discussed in the next step, thus:

Urer = 0.95 Uy, 3.1)

4- At time 7, estimate the response at the next time step 7+ At using the first three terms of the
Taylor series expansion: : : S .

Zest(bt +At) = g z(¥) -2 z(t—Ar) + % 7(t —2A%) (3.2)

5- Starting with the largest gain matrix in the library, estimate the control force vector u(t) from
equation (2.4). If this force exceeds Upef, select the next largest gain matrix and repeat the process.
If the force does not exceed Uyes, use the gain matrix to compute the control force vector for the
next time step. It should be noted that the computed and estimated (see step 4) control force vectors
will not be identical. The difference between the two, however, was less than 5 % for the examples
considered. This is the reason that U was selected as 95 % of Uy, in equation (3.1).

The above procedure has a negligible effect on the CPU time needed to perform the on-line
computations. For all the examples considered in this study, the CPU time required to sweep the
gain matrices (usually not all the ten gain matrices are swept) at a given time step was extremely
small, consequently, the modification has minor or no effect on the time delay of the control
system.

" The selection of the controller capacity is based on the trade-off between the cost of the control system and the
desired reduction in response.



The above procedure guarantees that the gain matrix used for the next time step will result in the
optimum use of the control system without exceeding the capacity. A diagram for the modification
to be added to the current optimal control algorithms is shown in Figure 3.1.
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4. NUMERICAL EXAMPLES

To illustrate the effectiveness of the modification in reducing displacements and control forces,
several examples -- a series of single-degree of freedom structures, a multi degree of freedom
structure, and a base isolated structure -- are considered. For each example, comparisons between
the modified algorithm (variable Q matrices) and the classical or instantaneous algorithms (constant
Q matrices) are carried out in two ways. The first compares the responses from the classical or
instantaneous algorithm with the responses from the modified algorithm for the same
displacements, to show the reduction in the control force. The second compares the responses
from the classical or instantaneous algorithm with the responses from the modified for the same
control forces, to illustrate the reduction in the displacement.

4.1 SDOF Structures Using Modified Classical Algorithm

Four linear SDOF structures with periods of 0.2 s,0.4 s, 1.0 s, and 2.0 s, a mass of 16 x 10° kg,
and a damping ratio of 5 %, with a single controller are used to demonstrate the advantages of the
modified algorithm over the classical. The Q and R matrices are selected as:

Q=qI@nx2n) R=1(mxm) (4.1)

where I is the identity matrix. The structures were subjected to the SOOE component of the El
Centro record of the Imperial Valley earthquake of May 18, 1940, with a peak ground acceleration
of 0.348g. The structures were first analyzed using the classical algorithm with a constant Q

matrix. Several values of q ranging from zero (no control force) to 106 (an arbitrary large number
to provide a substantial control force) were used in the analysis. Figure 4.1(a) shows the variation
of the maximum controlled displacement as a ratio of the uncontrolled displacement and Figure
4.1(b) shows the control force as a ratio of the structure’s mass for different q values. As noted
from the figures, the larger the q, the larger the control force, and as expected, the smaller the
displacement.

The four SDOF structures were analyzed for different Ut using the modified algorithm with a
library of ten gain matrices for each. The Q matrices were selected as discussed in step 1 of section
3. The results are presented in Table 4.1. Shown in the table are the maximum relative
displacement Xmax and absolute acceleration amax for each structure with no control and the
maximum displacement Xmax, acceleration amax, and control force Upax computed by the modified
algorithm along with the corresponding U ., Gmax, and Qmin- As expected, the computed control
force Upax may be somewhat different from the reference force Uy, but the difference between
the two remains within 5 % of Ukef.

In order to demonstrate the efficiency of the proposed modification, the same four structures were
analyzed using the classical algorithm with a constant Q matrix. Each structure was analyzed twice;
first with a Q matrix which resulted in the same displacement as that of the modified algorithm, and
second with a Q matrix which resulted in the same maximum control force. The results together
with the root mean square of the control force RMS(U) are presented in Tables 4.2(a) and 4.2(b)
where a significant reduction in the maximum displacement or the maximum control force is
observed. For the same displacement, Table 4.2(a), the modified algorithm gives a reduction in the
control force of up to 45 %, and for the same control force, Table 4.2(b), a reduction in the
displacement of up to 48 % is achieved. Comparison of the RMS values in Table 4.2(b) shows that
the RMS values from the modified algorithm are greater than those from the classical indicating that
the former results in a more efficient use of the controller in reducing the response. Figure 4.2
shows the relative displacement, absolute acceleration, and control force computed by the modified
algorithm for the first ten seconds of the response for the structure with the period T=0.4 s. Also
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Table 4.1. Summary of the Response of SDOF Structures Using the Modified Algorithm.

T No Control Uref | qmax | Gmin | Xmax | @max | Umax
s X max | @max KN [ x105 | x105 | mm g kN
mm g
0.2 6.6 | 0.65 2790 10 0.30 3.0 045 | 2791
0.4 244 | 0.62 2540 10 0.07 13.5 046 | 2664
1.0 128.0 | 0.52 2290 0.7 0.01 28.7 0.25 | 2301
2.0 176.5 | 0.18 2040 0.7 0.01 24.9 0.15 | 2045

Table 4.2(a). Comparison of Classical and Modified Algorithms for Same Displacement.

T Classical Modified %
S Xmax | @max | Umax |RMS(U)| Xmax | @max | Umax | RMS(U) | Reduction
mm g kN kN mm g kN kN U max
0.2 3.0 0.37 | 4890 731 3.0 0.45 | 2791 785 43
0.4 13.5 040 | 3978 739 13.5 0.46 | 2664 986 32
1.0 28.7 0.26 | 3094 665 28.7 0.25 | 2301 869 26
2.0 24.9 0.25 3726 810 24.9 0.15 | 2045 843 45

Table 4.2(b). Comparison of Classical and Modified Algorithms for Same Control Force.

T Classical Modified %
S Xmax | @max | Umax |RMS(U)| Xmax | @max | Umax | RMS(U) | Reduction
mm g kN | kN mm g kKN | kN U max
0.2 3.6 042 | 2791 470 3.0 045 | 2791 785 13
0.4 16.0 042 | 2664 528 135 | 046 | 2664 986 16
1.0 41.4 0.22 | 2301 526 28.7 | 0.25 | 2301 869 30
2.0 48.5 0.15 | 2045 541 249 | 0.15 | 2045 843 48

RMS values are computed for the first 15 seconds of the response.
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shown are the responses computed by the classical algorithm using a) the same displacement and
b) the same control force as those of the modified algorithm. The figure demonstrates the
advantages of the modified algorithm.

In order to test the modified algorithm for different excitations, the structure with the period of 0.4
s was analyzed using the S16E component of the accelerogram for the Pacoima Dam record of the
San Fernando earthquake of Feb. 9, 1971, with a peak ground acceleration of 1.17 g. The Uper and
the library of gain matrices used in the previous example were also used in this analysis. The
modified algorithm did not result in a reduction in the control force or displacement for this
excitation. When, however, the ground acceleration was scaled down to 30 % (approximately the
same peak ground acceleration as the SOOE component of El Centro, 1940) reductions in control
force of about 31 % and in displacement of about 38 % were noted. This illustrates that a control
system designed for a given excitation may not be effective for another excitation, and emphasizes
the fact that the control system should be considered as an integral part of the structural system and
designed based on the expected seismic excitation. Since the ground motion at any location varies
for different earthquakes, a statistical analysis of a set of records scaled to the expected peak
ground acceleration may be used to obtain the controller capacity and the corresponding library of
gain matrices when designing a control system.

4.2 MDOF Structure Using Modified Classical Algorithm

A six-story frame was used to test the effectiveness of the modified algorithm in reducing the
response and the control force in a MDOF structure. The column stiffnesses are k; = 3000 kN/m,
floor masses m; = 1.0 x 10° kg, and the damping ratio is assurmed to be 5 %. A controller is placed
on the top floor and Ures is assumed to be 760 kN. The excitation is the SOOE component of the El
Centro record of the Imperial Valley earthquake of May 18, 1940. The Q and R matrices are the
same as in equation (4.1).

A procedure similar to that used in the previous example was also used to obtain the displacements
and control forces for this example. The structure was first analyzed using the classical algorithm
where the relationship between Q and the maximum control force was found. Ten Q matrices were
determined as before and the structure was analyzed with the modified algorithm. Again, the
classical analysis was carried out twice: once for the top floor displacement the same as that of the
modified algorithm and then for the same maximum control force. The results for the three
analyses are shown in Table 4.3 where for the same control force (765 kN), a reduction in the top
floor displacement of approximately 21 % (26.1 mm compared to 33.0 mm) and for the same
maximum top floor displacement (26.1 mm), a reduction in the control force of 25 % (765 kN
compared to 1019 kN) are achieved with the modified algorithm. Observations similar to those for
a SDOF system regarding the RMS of the control force can also be made for MDOF structures.
Figure 4.3 shows the top floor displacement, acceleration, and the control force using the modified
and classical algorithms for the first ten seconds of the response. The figure demonstrates the
advantages of the modified algorithm.

4.3 Base-Isolated Structure Using Modified Instantaneous Algorithm

The six story frame of the previous example supported at its base by an isolator with a linear
stiffness ky, of 90 kN/m, a mass my, of 1.4 x 10’ kg, and a damping ratio of 20 % is considered in
this example. A controller is placed at the base to control the displacement of the isolator. The
fundamental periods are 0.48 s for the unisolated and 1.85 s for the isolated structures. For the
instantaneous optimal control, Yang et al [12] indicated that for the Q matrix to satisfy the stability

13
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Table 4.3. Summary of the Response of the Six-Story Building Using Modified and

Classical Algorithms.
No Control Modified Algorithm ] Classical Algorithm | Classical Algorithm
Level U,.=765 kN Uno= 1019 kN Una=765 kN
X max 2 max X max 4 max X max 4 max X max 2 max
mm g mm g mm g mm g
Top 57.2 1.09 26.1 0.95 26.1 0.44 33.0 0.59
) 53.6 0.99 22.9 0.54 24.5 0.46 31.5 0.54
4 47.2 0.88 20.6 0.53 224 0.47 27.9 0.53
3 38.6 0.81 17.0 0.55 18.8 0.46 23.1 0.51
2 27.4 0.65 12.4 0.49 13.7 0.43 16.8 0.48
1 14.5 0.51 6.6 0.51 7.4 0.40 8.9 0.42
RMSU) 285 kN 191 kN 142 kN

Table 4.4. Summary of the Response of the Six-Story Base-Isolated Building Using

Modified and Instantaneous Algorithms.

No Control Modified Algorithm | Classical Algorithm | Classical Algorithm
Level U,..=343 &N U,=605 kN U,..=343 kN
X max a max X max 2 max X max 2 max X max 2 max
mm g mm g mm g mm g
Top 91.5 0.14 51.0 0.23 51.8 0.28 64.5 0.18
5 90.9 0.14 50.8 0.22 51.3 0.21 64.3 0.16
4 90.2 0.14 50.3 0.17 50.8 0.19 63.8 0.15
3 89.2 0.13 49.8 0.15 50.0 0.17 63.0 0.15
2 87.6 0.13 49.3 0.16 49.5 0.17 62.2 0.15
1 86.1 0.12 48.5 0.16 48.8 0.18 61.0 0.14
Base 83.8 0.12 47.7 0.18 47.7 0.24 59.7 0.17
RMS(U) 155 kN 160 kN 104 kN

RMS values are computed for the first 15 seconds of the response.
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condition of the algorithm, one choice is the Riccati matrix where QAt in equation (2.10) is set
equal to P. Another choice, used in this example, is to satisfy the continuos Lyapunov equation:

ATQ + QA=-I @2)

In the above equation, I, is any symmetric positive semi-definite matrix which is selected to have
the form:

L=9¢ l(211 X 2n) (4.3)

where 1 is a matrix with all elements equal to unity. By varying ¢ in equation (4.3), different Q
matrices are determined from equation (4.2) and the corresponding gain matrices G are computed
from equation (2.10). To select the gain matrices, a procedure similar to that in example 1 was
used in this example. The response of the structure to the SOOE component of El Centro using the
modified algorithm and the instantaneous algorithm --one with the same control force and the other
with the same base displacement-- are presented in Table 4.4. The results show that for the same
base displacement (47.7 mm), a reduction in the control force of approximately 43 % (343 kN
compared to 605 kN) and for the same control force (343 kN), a reduction in the base displacement
of about 20 % (47.7 mm compared to 59.7 mm) is achieved with the modified algorithm. The base
displacement, acceleration, and the control force for the first ten seconds of the response are shown
in Figure 4.4.

4.4 Discussions

Based on the methodology and the examples presented, the advantages of using the modified
algorithm are:

1- The proposed modification with variable gain matrices results in a greater reduction in response
than the traditional algorithms with constant Q matrices. The main reason for this reduction is a
better distribution and a more efficient use of the control force.

2- Using variable gain matrices, the system matrix [A+BG] and consequently, the stiffness and
damping characteristics will also vary during the response. Hence, the structure responds more
efficiently to the external loads by better utilizing the structural properties and the control system
capacity.

3- The analysis indicates that control systems-should be considered as part of the structural system.
Similar to designing structural elements, the control system capacity and gain matrices should be
selected to resist the expected seismic loads. A statistical analysis of earthquake records scaled to
the expected acceleration may be used to determine the control system capacity and gain matrices.

4- Finally, when using control algorithms with constant gain matrices, the control force may
exceed the controller capacity under unexpected external loading conditions. It has been suggested
[8] that in such cases the control force be set equal to the controller capacity. While this suggestion
insures that the control force does not exceed the capacity, it does not maintain the optimality of the
algorithm. The proposed modification, however, guarantees that the computed control force does
not exceed the capacity and that it maintains the optimality of the algorithm.

16
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5. CONCLUSIONS

A modification to two optimal control algorithms which results in a greater reduction in structural
displacements and control forces is introduced. The modification consists of building a library of
gain matrices and selecting the gain matrix that makes the optimal use of the control force without
exceeding the controller capacity. The modification was applied to several SDOF systems, a
MDOF system, and a base isolated structure. Based on the examples used, the modification results
in a reduction of up to 45 % in control forces or in displacements as compared to the existing
algorithms.

The study indicates that the control system should be considered as part of the structural system,
where the external loads are resisted by structural rigidity as well as control forces. Similar to the
structural elements, the selection of control system parameters (controller capacity and gain
matrices) should be based on the expected seismic excitation.
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APPENDIX A. SYMBOLS AND NOTATION

>>——A

g
g

8 N HOO B BRI TIR Qu, Mg N W

unity matrix

system matrix

maximum absolute acceleration response
control force location matrix in state-space
damping matrix

control force location matrix

excitation location matrix

excitation vector

gain matrix

gravity acceleration

excitation location matrix in state-space
identity matrix

any symmetric positive semi-definite matrix
performance index

Stiffness matrix

mass matrix

number of degrees of freedom

Riccati matrix

operator or multiplier

weighting matrix

weighting matrix

time

control force vector

control force capacity

reference control force

displacement vector

maximum relative displacement

state vector

time increment

multiplier or operator
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